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Estimación de infecciones indocumentadas de
Covid-19 en Cuba a través de un método híbrido
mecano-estadístico
Estimating undocumented Covid-19 infections in
Cuba by means of a hybrid mechanistic-statistical
approach
Gabriel Gil1*, Alejandro Lage-Castellanos2

Resumen En el present trabajo, adaptamos el método híbrido mecano-estadístico de la Ref. [1] para estimar
el número total de infecciones de Covid-19 no documentadas en Cuba. Este esquema se basa en la estimación
de máxima verosimilitud de los parámetros de un modelo tipo SIR para la población infectada, suponiendo que
el proceso de detección se ajusta a un ensayo de Bernoulli. Nuestras estimaciones muestran que (a) el 60%
de las infecciones fueron indocumentadas, (b) la epidemia real detrás de los datos alcanzó el acme diez días
antes de lo que sugieren los reportes, y (c) el número reproductivo se anula rápidamente luego de 80 días de
epidemia.
Abstract We adapt the hybrid mechanistic-statistical approach of Ref. [1] to estimate the total number of
undocumented Covid-19 infections in Cuba. This scheme is based on the maximum likelihood estimation of a
SIR-like model parameters for the infected population, assuming that the detection process matches a Bernoulli
trial. Our estimations show that (a) 60% of the infections were undocumented, (b) the real epidemics behind the
data peaked ten days before the reports suggested, and (c) the reproduction number swiftly vanishes after 80th
epidemic days.
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Introduction

Covid-19 crisis has put forward the need for simple and
yet realistic epidemic modeling. The goal is to provide the
authorities and the public with accurate predictions to devise
and schedule containment and organization policies before
an outbreak peaks. To this effect, the daily number of new
infections and a minimal description of the epidemic peak
(the so-called acme), in terms of the date and number of active
infections, are among the crucial data. Another quantity of
concern, especially relevant to grasp the full extent of an
epidemics –as well as to assess detection strategies– is the
total number of active infections per day. Due to the fact that
there is always a fraction of infections that is not detected, a
fortiori when the pathogen may be carried asymptomatically

(e.g., the case of SARS-CoV-2), the full infected population
can only be inferred.

In particular, estimations of total Covid-19 infections (in-
cluding undocumented trasmission events) are already avail-
able in the literature for France [1] and China [2], but are
still unknown to many other countries. To the best of our
knowledge, there are no current estimates of total Covid-19
infections in Cuba. Therefore, this paper aims at contributing
such an important piece of information to the modeling of the
pandemics in Cuba.

Historically, epidemic modeling is dominated by mecha-
nistic approaches, like SIS, SIR and SEIR (where letters in
the acronyms stands for susceptible, exposed, infected and re-
covered compartments of the population) [3]. The advantage
of a mechanistic model is that it sets up the epidemic evolu-
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tion from reasonable time-dependent rules for trasmission and
recovery (the mechanics behind the epidemics, so to say). Of-
ten, such a mechanical description applies to the full infected
population. A straightforward (brute-force) fitting of mecha-
nistic models (e.g., the typical SIR) to just the reported data
may not be the correct strategy to follow, since, on one hand,
detection draws from statistical sampling of the full infected
population, and, on the other, there are detected cases with
unknown source of contagion (i.e., unable to stem from the in-
teraction between the infected and susceptible compartments,
as modeled).

There have been some efforts directed at reconciling a
mechanistic approach with the intrinsic statistical nature of
the reported data [4, 5]. In particular, we are inspired by the
hybrid mechanistic-statistical (HMS) approach laid down in
Ref. [1], which was succesful at modeling Covid-19 in France.

The HMS scheme by Roques et al. applies Bayesian infer-
ence to estimate SIR parameters (and, hence, the total infected
population), assuming that the detection process accomodates
to a Bernoulli trial [1]. Since we are interested in limited
outbreaks, where government measures are effective at con-
taining the disease, we can choose a simplification of the
general SIR model that considers the infected cases negligible
with repect to the full population. Moreover, in the same spirit
of Cabo-Cabo (fully mechanistic) modeling of Covid-19 in
Cuba [6], we simulate the effect of the state interventions by
means of a heuristic time-dependence of the infection rate,
dropping down the day the most strigent measures against
spreading were implemented. We also correct the statistical
part of the HMS as formulated in Ref. [1], by considering that
only the still undocumented portion of the infected cases are
sampled for test.

The outline of the paper is the following. Sec. 1 sum-
marizes the mechanistic and the statistical side of the hybrid
approach, emphasizing our ammendments to the formulation
in Ref. [1]. Sec. 2 describe the validation scheme and com-
putations. Sec. 3 tackle two epidemic scenarios: a synthetic
outbreak and the case of Covid-19 in Cuba. In Sec. 4, we pro-
vide some concluding remarks. In the Appendix, we comment
on how the synthetic epidemics (used for validation purposes)
was generated.

1. Methods
1.1 Mechanics: simplified SIR model with a heuris-

tic time-dependent infection rate
We start from the most customary Susceptible + Infected

+ Recovered (SIR) model, introduced by Kermack and McK-
endrick [7], i.e.,

dS(t)
dt

= −α
I(t)S(t)

N
, (1)

dI(t)
dt

= α
I(t)S(t)

N
−β I(t) , (2)

dR(t)
dt

= β I(t) . (3)

S(t), I(t) and R(t) are the susceptible, infected and recovered
time-dependent populations, which sum up to the size of the
full population N (i.e., S(t)+ I(t)+R(t) = N), whereas α

and β are the infection and recovery rates. Time t is given in
days, hereafter. The cumulative number of infections within a
timespan reads

T (t) = I(t)+R(t) . (4)

At difference with Ref. [1], we take a reasonable sim-
plification of the usual SIR model valid for a more or less
contained outburst or an early stage of the epidemics [6]. In
such a case, T (t)� N and S(t)≈ N. Therefore, the infected
population reads

I(t) = I0 exp{(R0−1) β (t− t0)} , (5)

where R0 =α/β is the basic reproduction number, and I(t0)=
I0 is the initial number of infections. From Eq. (5), we note
that an exponential increase or decrease of infectious events
takes place depending on whether R0 is greater or lesser than
the unity.

Now, let the infection rate be time-dependent. In such a
case, we get

I(t) = I0 exp
{∫ t

t0
α(t ′) dt ′−β (t− t0)

}
, (6)

instead of Eq. (5). We assume a heuristic shape for such a time-
dependence, for example, a step function taking a constant
value at the beginning (α0 > β , to allow for an outbreak) and
dropping down to a lower value (α∞ < α0) at some point in
time, t1. For a country suffering an epidemics, we set such an
inflection point to the day borders were closed or a stringency
index jumps abruptly [8]. In particular, we choose a Fermi-
Dirac distribution as a smooth version of the step function,
i.e.,

α(t) =
∆α

1+ e(t−t1)/τ
+α∞ , (7)

where α0 ≡ α(t0) = ∆α/(1+ e(t0−t1)/τ)+α∞, α1 ≡ α(t1) =
∆α + α∞, α∞ ≡ limt→∞ α(t) and τ is a smooth parameter
modulating how fast the infection rate drops down from α0 to
α∞. From Eqs. (6) and (7), we get

I(t) = I0 exp{(α1−β )(t− t0)}×(
(1+ exp{(t0− t1)/τ})
(1+ exp{(t− t1)/τ})

)∆ατ

, (8)

Models relying on heuristic time-dependent infection rates
that swiftly vanish after lockdown and stringent measures
from the government have been recently explored in Ref. [6].
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1.2 Statistics: testing as a binomial process and
maximum likelihood inference of SIR parame-
ters

Let us assume that the daily detection of new infected
cases δt is a Bernoulli process, as in Ref. [1]. Hence, the
random variable δt distributes binomially,

δt ∼ Bin(nt , pt) , (9)

where nt is the number of trials (i.e., the daily size of the test
sample) and pt , the probability of success in each independent
trial (for us, the probability of finding infected cases in the
population). Subindex t is kept throughout for time series
data.

In such a Bernoulli process, test outcomes are indepen-
dent from each other. For that to happen, the sample for test
would have to be selected at random from the full population.
However, more effective and realistic testing strategies often
departs from random sampling by focusing on trasmission
chains and/or risk groups. To simulate higher prevalence in
test samples as compared to random ones, we assume that
susceptible population will always be under-sampled, i.e., we
bias the probability of finding positive results. In Ref. [1],

pt =
I(t)

I(t)+κS(t)
(10)

where κ ∈ (0,1).
At odds with Eq. (10), we account for the fact that there

is a fraction of the infected population that once tested is
quarantined and their retests are not contemplated in δt . To
that aim, pt does not builds up from the total but from the
currently infected cases that are yet undocumented, i.e., the
difference between the full infected population and the active
(positive to the test) cases just the day before the current
tests, At−1. Again, we take S(t)≈ N. Therefore, Eq. (10) is
replaced by

pt =
I(t)−At−1

I(t)−At−1 +κN
. (11)

The likelihood of detecting daily reported cases δt given
an infected population evolving a là SIR (see Eq. (8)) and as-
suming testing outcomes can be accommodated into a Bernoulli
process is [1]

L (I0,∆α,α∞,τ,κ) = Π
t f
t=t0

(
nt
δt

)
pδt

t (1− pt)
nt−δt . (12)

Here, all the parameters are encoded into pt , in the case of SIR
parameters (I0, ∆α , α∞ and τ), through the infected population
I(t) (see Eqs. (8) and (11)). Supposing parameters distribute
uniformly within the searched domain, the maximization of
the likelihood L lead us to the SIR infected evolution that
best reproduce the reported data on daily new cases (in the
sense of having the largest probability of being the specific
dynamics behind the data). The biasing parameter κ is also
inferred by maximizing the likelihood.

2. Validation and computational details
As anticipated, we want to use our model to estimate the

number of total infected population over time from the re-
ported data. Since the motivation for developing such a model
is precisely the fact that there are undocumented infections,
we do not have an immediate way of validating our results.
Roques et al. [1] carried out an indirect validation, by com-
paring actual data on infected cases with the expected number
of the corresponding, binomially distributed, random variable
(actually, the cumulative over time of such quantities was em-
ployed). Here, we propose as well a direct validation scheme
by means of a network epidemic model (NEM). In a nutshell,
such a NEM builds up from an unconstrained spread and a
detection/quarantine process based on symptomatic cases and
traceable trasmission chains they point at (see the Appendix
for details). Although, the NEM deserves attention in its own
right, its full presentation and analysis is outside the scope of
this article and will be published elsewhere. In this paper, it
only provides a synthetic epidemic scenario where the total
infected population is known by construction, therefore, set-
ting a benchmark for our hybrid model estimation (introduced
in earlier sections).

The HMS model is implemented in a Wolfram Mathemat-
ica 11.3 notebook (available upon request to the authors). The
maximum likelihood estimation (MLE) is carried out through
a Nelder-Mead global optimization method with a maximum
of 103 iterations. We impose the natural constraints on the
parameters (i.e., ∆α ≥ 0, α∞ ≥ 0, τ ≥ 0, I0 > 0 and κ ∈ (0,1))
together with α0 ≡ ∆α/(1+ exp(t0− t1/τ))+α∞ > 1, to al-
low for an initial outbreak. As a matter of fact, we do not max-
imize the likelihood L itself (see Eq. (12)) but ln(L ), which
is a smoother function of the parameters. We set N ≈ 11×106,
approximately the Cuban population. To model the outbreak
of Covid-19 in Cuba, we set 1/β = 20 days [9] and t1 to the
13th epidemic day, i.e., the day borders and schools were
closed and stringency index took the largest leap (25 out of a
maximum of 100 units) [10]. Covid-19 data for Cuba is taken
from [10, 11]. For the MLE in Cuba, we use only the first 80
days, which include an almost complete epidemic peak. Our
SIR cannot capture the two-peak profile actually seen in the
number of active cases reported for Covid-19 in Cuba (see
Fig. 2), so far as 110 epidemic days. The number of daily
PCR tests for Covid-19 as reported by the Cuban Ministry
of Health is a tricky figure in many senses: for example, it
is not clear whether it includes or not (a) retests of already
detected cases and (b) tests for which the result might be
pending [12]. Not having a more intuitive way of estimating
the daily number of tests, we choose a constant value for the
number of daily tests and set it to the geometric mean of the
reported daily Covid-19 tests data in Cuba in a period of 110
epidemic days (i.e., nt ≈ 1500). For the synthetic epidemics
(our validation case), we change abruptly the reproduction
number at the 43rd day (so, we can set t1 = 43 days) and
choose a recovery time of 1/β = 7 days. The number of tests
is the same as for the Covid-19-in-Cuba scenario.
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3. Results
3.1 A synthetic epidemic scenario

Figure 1 shows our results on HMS estimations of the ex-
tent of a simulated epidemic outburst, where the total number
of active cases is known by construction. Remarkably, such
estimations are in a good agreement with the actual bench-
mark data during the early stages of the outbreak. The quality
of our estimation after the epidemics has peaked is poor, but
note that they are at least able to spot accurately the date of
the acme. Together with our HMS estimations, we plot a
non-linear regression model as applied to the total number of
active cases. Both the HMS and the regression models have
the same functional dependence on time, given by Eq. (8),
and target the same quantity (i.e., the total number of active
cases). The practical difference between the two is in the
input data: whereas HMS builds up from data on the active
and newly detected cases per day, the other directly fits the
usually unknown total number of active cases. We do not
expect that HMS approach achieve the same degree of success
of a fit, since the underlying method does not try to make I(t)
conform to the total number of active cases, e.g., by mini-
mizing their relative differences. At odds with a regression,
the HMS maximizes the chances of obtaining newly detected
cases per day out of a statistical sampling of a proxy for yet
undocumented infections (i.e., I(t)−At−1). The advantage
of HMS is that it is useful in all realistic situations in which
the total number of active cases is simply not available due to
undocumented infections.
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Figure 1. (color online) Total number of active cases for a
simulated epidemics (full circles) and our HMS estimation of
the same quantity (solid red line). We also show a fit of
Eq. (8) to the total number of active cases (dashed blue line).
As a reference, we plot the reported number of active cases
(empty circles), which is the input of our HMS estimation.

3.2 Covid-19 in Cuba
As seen in the last section, HMS works well at the epi-

demic outburst, providing reasonable estimates of the total
number of cases and the date of the full epidemic curve (which
need not to coincide with the peak of the reported data). Thus
validated, we proceed to apply HMS to the recent Covid-19

epidemics in Cuba. In Fig. 2, we show a comparison be-
tween active cases as obtained from official reports and our
estimates (which includes undocumented infections). The
full epidemic curve peaks ten days before the reported one.
Day by day, reported infections ranges from 4 to 49% of the
total, with a mean of 28%, achieved at the full acme. Remark-
ably, the cumulative number of reported infections within the
timespan of 80 days was about 40% of the total (see Eq. (4)),
and T/N = 4.6×10−4. These are fingerprints of good man-
agement of Covid-19 medical crisis in Cuba (cf. Ref. [2]’s
estimate of 14% of documented infections in China before the
travel restrictions on 23 January 2020). Moreover, notice that
the fraction of documented infections increase over time, from
an initial value of 11% to the aforementioned 40%, indicating
a refinement in Cuban detection process during the epidemics.
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Figure 2. (color online) Number of active cases of Covid-19
in Cuba (black dots), together with our HMS estimation of
the total number of active cases (solid red line), including
undocumented infections.

In the case of Covid-19 in Cuba, we can only appeal to an
indirect validation of our HMS estimates. Fig. 2 shows the cu-
mulative number of reported infections, ∑

t
t′=t0 δt′, along with

its expected value within our Bernoulli process, ∑
t
t′=t0 nt′pt′.

Good agreement is generally obtained (mean and standard
deviation of around 9 and 28 cases, respectively), and nearly
zero relative difference at the end of the interval (80 days).

Table 1. Summary of the parameters obtained for each
modeling presented in this paper. R(0)

0 = α0/β is the

reproduction number the first epidemic day, R(∞)
0 = α∞/β is

its asymptotic value and κ̃ = κ×103.

Epidemics I0 R(0)
0 R(∞)

0 τ (days) κ̃

NEM simulated 7.81 1.92 0.69 0.86 3.9
Covid-19 in Cuba 32.47 6.39 0.02 11.17 4.0

Table 1 summarizes the parameters we get for both, the
simulated epidemics and Covid-19 in Cuba. In the latter
case, we emphasize the jump in reproduction number the day
borders and schools were closed, from 6.39 at the beginning
to nearly zero the 80th epidemic day (cf. [6]).
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Figure 3. (color online) Cumulative number of reported
cases of Covid-19 in Cuba (black dots) along with the
expected number of the same quantity by means of HMS
(solid red line).

4. Concluding remarks

We adapted the hybrid mechanistic-statistical method de-
veloped by Roques et al. [1], already succesful at modeling
Covid-19 in France, to be able to make reasonable estima-
tions of total Covid-19 infections in Cuba. Our theoretical
contribution is two-fold. On one hand, we chose a heuristic
modification of the classical SIR model that assumes limited
outbreaks together with an infection rate changing abruptly
when stringent measures take place (see also Ref. [6]). On the
other hand, we corrected the probability entering the binomial
distribution of newly detected cases, in order to account for
the fact that the daily reports do not include retest outcomes
of already detected cases. Both ammendments turn out to be
essential when modeling Covid-19 in Cuba.

Furthermore, we provided a testing ground for the hybrid
mechanistic-statistical estimations: the case of a network epi-
demic simulation where the total number of active cases is
known by construction. The hybrid model is validated against
such a benchmark, at least in the early stages of the outburst
before the epidemics peaks.

Applying the hybrid model to Covid-19 in Cuba allows
us to estimate the total number of active cases, including
undocumented infections. The resulting number of undocu-
mented Covid-19 infections in Cuba reaches 60%, which is
considerably less than the estimate for China (86%) before the
travel restrictions were implemented [2], therefore, indicating
a good management of the medical crisis in Cuba.
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Appendix: Network epidemic model with
quarantine

We consider an stochastic branching process in which
nodes are infected people, and connections represent the trans-
mission of the disease. As we are interested in the case of
controlled or small size epidemics, we will disregard the total
size of the population that will be effectively considered as
infinite.

In our simulation, we will sequentially grow an epidemic
tree in which nodes are in any of the following states:

E: exposed to the virus, meaning the person has the virus
but is not capable of transmitting it,

Is: infectious and symptomatic, meaning the person is capa-
ble of transmitting the virus and is also showing symp-
toms of the disease,

Ia: infectious and asymptomatic, when the person do not
show symptoms but still can transmit the virus,

R: when the person is no longer transmitting the virus
(either because it recovered or died).

On top of these states, nodes can either be quarantined or not.
The infectious process is controlled by a set of constants:

R0: is the expected number of new infections caused by a
single infected individual. This means that in average,
every infected person will generate R0 new nodes in the
tree;

α: is the fraction of infected people that will develop symp-
toms;

β : is the fraction of contacts that are traceable, meaning
that if one node is detected to be infected, then it can
point to the neighbors (parent or children in the tree)
that are connected through traceable contacts;

rE→I : is the rate at which exposed nodes turn into infectious;

rS→R: is the rate at which infectious and symptomatic nodes
recover;

rA→R: is the rate at which infectious and asymptomatic nodes
recover;

Ciencias Matemáticas, Vol. 34, No. 1, 2020, Pag. 49-54



54Estimación de infecciones indocumentadas de Covid-19 en Cuba a través de un método híbrido mecano-estadístico

cS: is the rate at which a symptomatic infectious node gen-
erates new contacts each day. In order to keep the
meaning of R0, we shall have cS = R0× rS→R;

cA: is the rate at which a symptomatic infectious node gen-
erates new contacts each day. For the same previous
reason, cA = R0× rA→R;

rS→Q: is the rate at which symptomatic people are detected by
the quarantine process and moved to quarantine;

rQ→R: is the rate at which people are released from the quar-
antine, either because they died or recovered.

Algorithm 1 Stochastic daily SEIRQ cascade process.

1: procedure ONE-DAY-UPDATE(E, Is, Ia,R,Q list of nodes
in each state)

2: for n ∈ Q do
3: if n is new in quarantine then
4: Add-contacts-to-Q(n) . Contact tracing
5: Move-Q-to-R-with-prob(rQ→R,n)
6: for n ∈ E do
7: Move-E-to-I-with-prob(rE→I ,n)
8: for n ∈ Is do
9: Generate-offspring-with-rate(cs,n)

10: Move-S-to-R-with-prob(rS→R,n)
11: Move-S-to-Q-with-prob(rS→Q,n)
12: for n ∈ Ia do
13: Generate-offspring-with-rate(ca,n)
14: Move-S-to-R-with-prob(rA→R,n)

The whole simulation is schematized in algorithm 1. Func-
tions Move-A-to-B-with-prob will remove the given node
from list A and put it on list B, with a given probability. The
function Generate-offspring-with-rate will add new nodes as
children of the given node, some of which will be traceable
some who won’t, and some of which will be symptomatic and
some who won’t. All this new nodes are added also to the
Exposed list. The function Add-contacts-to-Q will follow all
the traceable contacts of the node n and put them in quarantine
(removing them from the lists they were).

A simulation like this can mimic most of the indicators
that are being reported by the Cuban Ministry of Health in its
daily briefings. The reports correspond to the characteristics
of the nodes that are quarantined each day: whether they come
from known contacts, whether they have symptoms or not. A
quantity that is not directly included in this simulation is the
amount of declared contacts that will be negative to the virus
test, since we only deal with positive cases. However, this

number is not reported either by the health authorities, and
it is natural to assume that the number is a Poisson random
variable with not particular other implications in the process.
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