Systematic review and the use of artificial intelligence.
Keywords:
systematic review, artificial intelligenceAbstract
Introduction: Systematic reviews provide a comprehensive and unbiased synthesis of several relevant studies in a single document using rigorous and transparent methods. The emergence of Artificial Intelligence (AI) tools has transformed the methodology of systematic reviews, streamlining processes that previously required months of manual work. Objective: To analyze the value and relevance of using artificial intelligence tools for developing systematic reviews. Author's position: Despite the methodological value and the place that systematic reviews occupy in relation to the level of evidence provided by their results, there is no doubt that the process of conducting them is, at the very least, quite cumbersome and lengthy. Artificial intelligence tools, which in the last five years have reached a high level of effectiveness and reach, have also contributed to the efficiency in the development of these investigations, a scheme to follow is proposed, based on current AI solutions in each of the elements that make up systematic reviews Conclusions: It was concluded that AI allows for faster, reproducible and scalable systematic reviews, but does not replace human judgment. The combination of tools such as Rayyan for screening, SciSpace for extraction and ChatGPT for assisted writing, together with standardized protocols, can mark the future of the synthesis of scientific evidence
Downloads
References
1. Aymerich, M., Estrada, M.D., Jovell, A.J. (1999). Revisión sistemática de la evidencia científica. En: Jovell AJ, Aymerich M. Evidencia científica y toma de decisiones en sanidad. Monografies Mèdiques de l’Acadèmia de Ciències Mèdiques de Catalunya i de Balears. Barcelona.
2. Carro, E. (2016). “Avances metodológicos en la evaluación de la calidad de la producción científica (investigadores y tesis de pregrado y postgrado) en psicología desarrolladas en la región centro y noreste de México” (Tesis doctoral). Universidad de Sevilla, España. Recuperado de: https://idus.us.es/xmlui/handle/11441/41092
3. Relevo, R. (2012). “Effective Search Strategies for Systematic Reviews of Medical Tests”. In: S. Chang, D. Matchar, G. Smetana, C. Umscheid (eds). Methods Guide for Medical Test Reviews [Internet]. Rockville, United States of America: Agency for Healthcare Research and Quality. Recuperado de: https://www.ncbi.nlm.nih.gov/books/NBK98242/
4. Speyer, R., Kim, J. H., Doma, K., Chen, Y. W., Denman, D., Phyland, D., Parsons, L., Cordier, R. (2019). Measurement properties of self-report questionnaires on health-related quality of life and functional health status in dysphonia: a systematic review using the COSMIN taxonomy. Quality of life research, 28(2), 283–296. https://doi.org/10.1007/s11136-018-2001-6
5. Sobrido, M. y Rumbo-Prieto, M. (2018). “La revisión sistemática: pluralidad de enfoques y metodologías”, Enfermería Clínica, 28(6), 387-393. https://doi:10.1016/j.enfcli.2018.08.008
6. Jack Nunn; Steven Chang; et al. What are Systematic Reviews?. WikiJournal of Medicine, 2020, 7(1):5 https://doi:10.15347/wjm/2020.005
7. Atkinson, C. F. (2023). Cheap, Quick, and Rigorous: Artificial Intelligence and the Systematic Literature Review. Social Science Computer Review. https://doi.org/10.1177/08944393231196281
8. Van Dijk S; Brusse- Keizer M; C Bucsán Ch; Van der Palen J; Doggen C; Lenferink C. Artificial intelligence in systematic reviews: promising when appropriately used. MJ Open 2023;13:e072254. http://doi:10.1136/bmjopen
9. Bernard N; Sagawa Jr Y; Bier N; Lihoreau Th; et al. Using artificial intelligence for systematic review: the example of elicit. BMC Medical Research Methodology (2025) 25:75. https://doi.org/10.1186/s12874-025-02528-y
10. Blaizot, A., Veettil, S. K., Saidoung, P., Moreno‐Garcia, C. F., Wiratunga, N., Aceves‐Martins, M., Lai, N. M., & Chaiyakunapruk, N. (2022). Using artificial intelligence methods for systematic review in health sciences: A systematic review. Research Synthesis Methods, 13(3), 353–362. https://doi.org/10.1002/jrsm.1553
11. Mahuli, S. A., Rai, A., Mahuli, A., & Kumar, A. (2023). Application ChatGPT in conducting systematic reviews and meta-analyses. https://doi.org/10.1038/s41415-023-6132-y
12. Muthu, S. (2022). The efficiency of machine learning-assisted platform for article screening in systematic reviews in orthopaedics. https://doi.org/10.1007/s00264-022-05672-y
13. Queiros, L. M., Mearns, E. S., McCarvil, M. S., Alarcão, J., Garcia, M. J., & Abògúnr̀in, Ṣẹ̀yẹ. (2023). Is Artificial Intelligence Replacing Humans in Systematic Literature Reviews? A Systematic Literature Review. https://doi.org/10.21203/rs.3.rs-3119345/v1
14. Wang Z, Nayfeh T, Tetzlaff J, et al. Error rates of human reviewers during abstract screening in systematic reviews. PLoS ONE 2020;15:e0227742.
15. Martínez Rámila KP; Ortíz Méndez V. Inteligencia Artificial en Revisiones Sistemáticas de Literatura: experiencias de estudiantes en el contexto universitario. Revista Paraguaya de Educación a Distancia, FACEN-UNA, Vol. 5 (2) – 2024, pp. 66-75. https://doi.org/10.56152/reped2024
16. Bolaño García M; Duarte Acosta N. (2023). Una revisión sistemática del uso de la inteligencia artificial en la educación. Revista Colombiana de Cirugía, vol. 39, núm. 1, pp. 51-63, 2024. https://doi.org/10.30944/20117582.2365
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ariel Delgado Ramos, Ileana Armenteros Vera, María Josefina Vidal Ledo

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Those authors who have published with this journal, accept the following terms:
a. The authors will keep their copyright and guarantee the magazine the right of first publication of their work, which will be simultaneously subject to the Creative Commons Attribution License that allows third parties to share the work as long as the author and first publication of this magazine are indicated.
b. The authors may adopt other non-exclusive license agreements for the distribution of the published version of the work (e.g., deposit it in an institutional telematic archive or publish it in a monographic volume) as long as the initial publication in this journal is indicated.
c. Authors are allowed and recommended to disseminate their work through the Internet (e.g.: in institutional telematic archives or in their web page) before and during the submission process, which may produce interesting exchanges and increase the number of citations of the published work. (See The effect of open access).
