An approach to population-based epidemiologic models

Authors

Keywords:

biomatemática, modelos epidemiológicos, ecuaciones diferenciales ordinarias, urnas.

Abstract

Introduction: Mathematical biology or biomathematics is a scientific area that studies and models biological processes with the use of mathematical techniques and methods. It is of great importance in the formulation of mathematical models that describe the dynamics of processes associated with biological and medical phenomena and especially for epidemiology in its purpose of characterizing the clinical and social context in the dynamics of contagious diseases.

Objective: To argue the different forms of population epidemiological models essential in the treatment and management of communicable diseases and epidemics, through a relatively diverse bibliographic search.

Development: Starting from the classical Kermack-McKendrick formulation, we present an overview of the models defined by ordinary differential equations for their proven performance in the mathematical description of the spread of diseases. In a second moment, we present within the probabilistic models, the so-called urn models, which allow another approach, equally valid but of more recent use.

Conclusions: Biomathematics is a multidisciplinary science in constant development and therefore, the models presented in this study are only an approach to two different approaches from the mathematical point of view, such as the population models defined by ordinary differential equations and commonly solved by numerical and computational analysis techniques and the probabilistic urn models.

Keywords: biomathematics; epidemiological models; ordinary differential equations; urns.

Downloads

Download data is not yet available.

Author Biographies

Elianys García-Pola Cordoves, Universidad de La Habana

Profesora Titular del Departamento de Matemática Aplicada de la Facltad de Matemática y Computación de La Universidad de La Habana

Aymée de los Ángeles Marrero Severo, Universidad de La Habana

Profesora Titular del Departamento Matemática Aplicada de la Facultad de Matemática y Computación de la Universidad de La Habana

References

[1] Boletín trimestral Instituto de Ciencias Matemáticas N.8 IV Trimestre 2014/ I Trimestre 2015.

[2] Brauer, F. y otros. (2015). Modelos de la propagación de enfermedades infecciosas. Cali. Dirección de Investigaciones y Desarrollo Tecnológico.

[3] Cervantes, L. (2015). Modelización matemática. Principios y aplicaciones. Benemérita Universidad Autónoma de Puebla.

[4] Cruz-Reyes, A.; Camargo-Camargo, B. (2001). Glosario de términos es Parasitología y Ciencias Afines. Instituto de Biología, Programa Universitario de Investigación en Salud, y Plaza y Valdés. p. 85. ISBN 968-856-878-3.

[5] Christophe Fraser; Christl A. Donnelly, Simon Cauchemez et al. (2009). Pandemic Potential of Strain of Influenza A(H1N1): Early Findings. Science 324 (5934):1557-1561. doi:10.1126/science.1176062

[6] McCullagh, P. (2002), «What is a statistical model?», Annals of Statistics 30: 1225-1310, doi:10.1214/aos/1035844977.

[7] Miller Jeff et al. «Earliest Known Uses of Some of the Words of Mathematics (S)». 2012.

[8] Sanz, I. (2016). Modelos epidemiológicos basados en ecuaciones diferenciales. La Rioja: Servicio de Publicaciones de la Universidad de La Rioja.

[9] Velasco, J. (2007). Modelos matemáticos en epidemiología: enfoques y alcances. México, D.F.

[10] Velasco, J. (2017). Notas de modelación y métodos numéricos V. Guanajuato, México.

[11] Vinay Kumar; Abul K. Abbas; Nelson Fausto; Jon C. Aster (2010). «Capítulo 3: Renovación, reparación y regeneración tisular». Patología estructural y funcional. Robbins y Cotran (8a edición). España: Saunders Elsevier. pp. 79-110. ISBN 978-1-4160-3121-5. OCLC 726744982.

Published

2021-09-07

How to Cite

1.
García-Pola Cordoves E, Marrero Severo A de los Ángeles. An approach to population-based epidemiologic models. INFODIR [Internet]. 2021 Sep. 7 [cited 2025 Oct. 1];(37). Available from: https://revinfodir.sld.cu/index.php/infodir/article/view/1085

Issue

Section

Review or Position Articles