Cirugía robótica: ¿una tecnología disruptiva?

Autores/as

  • Rafael Torres Peña Centro Nacional de Cirugía de Mínimo Acceso

Palabras clave:

cirugía robótica, tecnología disruptiva, Sistema DaVinci.

Resumen

La robótica aplicada a la cirugía ha sido considerada como una de las 10 tecnologías que ha tenido mayor impacto durante el 2018. Su inserción en la disciplina quirúrgica ha seguido una estrategia disruptiva, en la que el elevado costo ha sido su elemento más contradictorio, el cual ha influido de forma negativa en la decisión de adquirirla por parte de los sistemas de salud y en el posicionamiento de las sociedades científicas, las que en sus declaraciones de consenso han sido cautelosas en su asimilación, en tanto no se obtengan las evidencias necesarias de su costo-efectividad. Sin embargo, aunque más de 30 años no han sido suficientes para dejar obsoletas y desplazar a las tecnologías quirúrgicas precedentes, la robótica jugará un papel cada vez mayor en el desarrollo de la cirugía. Los quirófanos del futuro constarán de sistemas integrados de información en el que todos sus elementos estarán basados en información, y los robots quirúrgicos serán solo un componente. En este contexto, ni la cirugía convencional ni la laparoscópica podrán ser controladas íntegramente por el sistema, mientras que los robots si son considerados como sistemas de información totalmente controlados por computadora. El objetivo del artículo es brindar a los directivos de salud una información detallada del desarrollo de la cirugía robótica y las estrategias empleadas por las compañías para su inserción en los sistemas de salud.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Rafael Torres Peña, Centro Nacional de Cirugía de Mínimo Acceso

Dr. en Ciencias Médicas

Subdirector de Asistencia Médica del CNCMA

Profesor Titular en Cirugía General

Investigador Auxiliar

Citas

1. Ruiz J. Evolución histórica de la terapéutica Endoscópica. En: Ruiz J, Torres R, Fernández A, Martinez MA, Pascual H. Cirugía Endoscópica. Fundamentos y aplicaciones. Ciudad de La Habana: Editorial Científico-Técnica; 2000. pp. 21-22.

2. Satava RM. Surgery 2001: a technologic framework for the future. Surg Endosc. 1993;7:111-113

3. Herron DM, Marohn M. A consensus document on robotic surgery. Surg Endosc. 2008;22:313-325

4. Jacobsen G, Elli F, Horgan S. Robotic surgery update. Surg Endosc. 2004;18:1186-1191

5. Tan A, Ashrafian H, Scott AJ, Mason SE, Harling L, Athanasiou T, Darzi A. Robotic surgery: disrup-tive innovation or unfulfilled promise? A systematic review and meta-analysis of the first 30 years. Surg Endosc. 2016; 30:430-4352

6. Oviedo-Barrera RJ. The Surgical Robot: Applications and Advantages in General Surgery. [e-book] [Internet]. In: Serdar Küçük (ed.) Surgical Robotics. INTECH: 2018. pp39-64. [actualizado 4 ene 2018; citado 24 nov 2018]. Disponible en: http://dx.doi.org/10.5772/intechopen.68864

7. Kwoh YS, Hou J, Jonckheere EA, Hayati S. A robot with improved absolute positioning accuracy for CT guided stereo-tactic brain surgery. IEEE Trans Biomed Eng. 1988;35:153-161

8. Davies BL, Hibberd RD, MJ Coptcoat, Wickham JEA. A surgeon robot prostatectomy-a laboratory evaluation. J Med Engng Technol. 1989;13:273-277

9. Bann S, Khan M, Hernandez J, Munz Y, Moorthy K, Datta V, et al. Robotics in surgery. J Am Coll Surg. 2003;784-795

10. Paul Ha, Bargar WL, Mittlestadt B, Musits B, Taylor RH, Kazanzides P. Development of a surgical robot for cementless total hip arthroplasty. Clin Orthop. 1992;285:57-66.

11. Unger X, Unger H, Bass R. AESOP robotic arm. Surg Endosc. 1994; 8:1131

12. Kavoussi LR, Moore RG, Adams JB, Partin AW. Comparison of robotic versus human laparoscopic camera control. J Urol. 1995;154:2134-2146

13. Ballantyne GH. Robotic surgery, telerobotic surgery, telepresence, and telementoring. Review of early clinics results. Surg Endosc. 2002;16:1389-1402

14. Yavuz Y, Ystgaard B, Skogvolll E, Marvik R. A comparative study evaluating the performance of sur-gical robots AESO and Endoassist. Surg Laparosc Endosc Percut Tech. 2000;10:163-167

15. Omote K, Feussner H, Ungeheuer A, Arbter K, Wei GQ, Siewert JR, Hirzinger G. Self-guided robotic camera control for laparoscopic surgery compared with human camera control. Am J Surg. 1999;177:321-324

16. Schurr MO, Buess G, Neisius B, Voges U. Robotics and telemanipulation technologies for endoscopic surgery. Surg Endosc. 2000;14:375-381

17. Marescaux J, Leroy J, Rubino F, Smith M, Vix M, Simone M, et al. Transcontinental robot-assisted remote telesurgery: feasibility and potential applications. Ann Surg. 2002;235:487-492.

18. Haidegger T and Benyó Z. Extreme Telesurgery. In: Seung Hyuk Baik. (Ed) Robot Surgery. Intech; 2010, p.25-44

19. AnnualReports [Internet]. Intuitive Surgical: Annual Report 2003. [actualizado 12 mar 2004; citado 5 dic 2018]. Disponible en: http://www.annualreports.com/HostedData/AnnualReportArchive/i/NASDAQ_ISRG_2003.pdf

20. Himpens J, Leman G, Cadiere GB. Telesurgical laparoscopic cholecystectomy [letter]. Surg Endosc. 1998;12:1091

21. Cadière GB, Himpens J, Vertruyen M, Bruyns J, Fourtanier G. Nissen fundoplication done by remotely controlled technique. Ann. Chir. 1999;53(2):137-141

22. Carpentier A, Louimel D, Aupacie B, Berrebi A, Reliand J. Computer-assisted cardiac surgery [letter]. Lancet. 1999;353:379-380

23. Tsuda S, Oleynikov D, Gould J, Azagury D, Sandler B, Hutter M, et al. Da Vinci Surgical System (In-tuitive Surgical, Sunnyvale, CA). [Internet]. SAGES; 2018 [actualizado 15 julio 2015; citado 24 nov 2018]. Disponible en: https://www.sages.org/publications/tavac/tavac-analysis-davinci-surgical-system/

24. SAGES. Da Vinci Xi Surgical System with Table Motion: Fourth generation robotic-assisted surgical platform. SAGES; 2018 [actualizado 8 jun 2016; citado 24 nov 2018]. Disponible en: https://www.sages.org/publications/tavac/da-vinci-xi-surgical-system-table-motion-fourth-generation-robotic-assisted-surgical-platform/

25. Ross S, DeReus H. Flex Robotic System and Flex Colorectal Drive. [Internet]. SAGES; 2018 [actuali-zado 2 abr 2018; citado 24 nov 2018]. Disponible en: https://www.sages.org/publications/tavac/flex-robotic-system-and-flex-colorectal-drive/

26. Topaz A, Milone L. Senhance surgical robotic system. [Internet]. SAGES; 2018 [actualizado 9 ene 2018; citado 24 nov 2018]. Disponible en: https://www.sages.org/publications/tavac/senhance-surgical-robotic-system/

27. Bower JL, Christensen CM. Disruptive Technologies: Catching the wave. Harvard Business Review 1995.

28. Loza Matovelle D, Dabirian R. Introducción a la Tecnología Disruptiva y su Implementación en Equi-pos Científicos. Rev Politécnica. 2015;36(3)

29. Computing. Las 10 tecnologías que protagonizarán 2018 [Internet]. Computing; 2018 [actualizado 1 feb 2018; citado 24 nov 2018]. Disponible en: http://www.computing.es/analytics/informes/1103388046201/10-tecnologias-protagonizaran-2018.1.html

30. Intuitive Surgical Annual Reports (2007-2017). [Internet]. AnnualReports.com; 2019 [actualizado 2 feb 2018; citado 15 ene 2019]. Disponible en: http://www.annualreports.com/Company/intuitive-surgical-inc

31. Barbash GI, Glied SA. New Technology and Health Care Costs - The Case of Robot-Assisted Surgery. N Engl J Med. 2010;363(8):701-4

32. Schaaf T. In MedTech History - Surgical Robotics: Part 1. [Internet]. MedTech Strategist; 2018 [actu-alizado 12 jun 2018; citado 15 ene 2019]. Disponible en: https://www.medtechstrategist.com/mts-blog/medtech-history-robotics-1

33. Schaaf T. In MedTech History - Surgical Robotics: Part 2. [Internet]. MedTech Strategist; 2018 [actua-lizado 26 jun 2018; citado 15 ene 2019]. Disponible en: https://www.medtechstrategist.com/mts-blog/medtech-history-robotics-2

34. Roh KS, Yoon S, Do Kwon Y, Shim Y, Kim YJ. Single-Port Surgical Robot System with Flexible Surgical Instruments. In: Liu H, Kubota N, Zhu X, Dillmann R, Zhou D. (eds) Intelligent Robotics and Applications. ICIRA 2015. Lecture Notes in Computer Science, vol 9245. Springer, Cham

35. Chang KD, Abdel Raheem A, Choi YD, Chung BH, Rha KH. Retzius-sparing Robot-assisted Radical Prostatectomy using Revo-i robotic surgical system: Surgical Technique and Results of the First Human Trial. BJU Int. 2018;122(3):441-448

36. Arata J, Kozuka H, Kim HW, Takesue N, Vladimirov B, Sakaguchi M, Tokuda J, Hata N, Chinzei K, Fujimoto H. Open core control software for surgical robots. Int J CARS. 2010;5:211-220

37. Yi1 B, Wang G, Li J, Jiang J, Son Z, Su H, Zhu S. The first clinical use of domestically produced Chi-nese minimally invasive surgical robot system “Micro Hand S”. Surg Endosc. 2016;30:2649-2655

38. China Medical Robotics Industry Report, 2016-2020. [Internet]. Research and Markets; 2019 [actual-izado 1 oct 2016; citado 10 ene 2019]. Disponible en: https://www.researchandmarkets.com/research/kv78vq/china_medical

39. Szold A, Bergamaschi R, Broeders I, Dankelman J, Forgione A, Lango T, Melzer A, Mintz Y, Morales-Conde S, Rhodes M, Satava R, Tang CN, Vilallonga R. European Association of Endoscopic Surgeons (EAES) consensus statement on the use of robotics in general surgery. Surg Endosc. 2015;29:253-288

40. Talamini MA. SAGES Assessment on the Da Vinci Surgical System. Surg Endosc. 2016;30:803-804

Descargas

Publicado

2019-03-11

Cómo citar

1.
Torres Peña R. Cirugía robótica: ¿una tecnología disruptiva?. INFODIR [Internet]. 11 de marzo de 2019 [citado 3 de octubre de 2025];(29):91-106. Disponible en: https://revinfodir.sld.cu/index.php/infodir/article/view/580

Número

Sección

Artículos de Revisión o Posición